Estimating the states of surrounding traffic participants stays at the core of autonomous driving. In this paper, we study a novel setting of this problem: model-free single-object tracking (SOT), which takes the object state in the first frame as input, and jointly solves state estimation and tracking in subsequent frames. The main purpose for this new setting is to break the strong limitation of the popular "detection and tracking" scheme in multi-object tracking. Moreover, we notice that shape completion by overlaying the point clouds, which is a by-product of our proposed task, not only improves the performance of state estimation but also has numerous applications. As no benchmark for this task is available so far, we construct a new dataset LiDAR-SOT and corresponding evaluation protocols based on the Waymo Open dataset. We then propose an optimization-based algorithm called SOTracker involving point cloud registration, vehicle shapes, correspondence, and motion priors. Our quantitative and qualitative results prove the effectiveness of our SOTracker and reveal the challenging cases for SOT in point clouds, including the sparsity of LiDAR data, abrupt motion variation, etc. Finally, we also explore how the proposed task and algorithm may benefit other autonomous driving applications, including simulating LiDAR scans, generating motion data, and annotating optical flow. The code and protocols for our benchmark and algorithm are available at https://github.com/TuSimple/LiDAR_SOT/. A video demonstration is at https://www.youtube.com/watch?v=BpHixKs91i8.
翻译:估计交通参与者周围交通参与者的状态是自主驾驶的核心。 在本文中,我们研究了这一问题的新背景:无模型的单弹跟踪(SOT),它将第一个框架的物体状态作为输入,并共同解决国家估计和随后的跟踪。这个新环境的主要目的是打破多球跟踪中流行的“探测和跟踪”办法的严格限制。此外,我们注意到,通过覆盖点云(这是我们拟议任务的一个副产品)来影响完成点云(这是我们拟议任务的副产品),不仅改进了国家估计的绩效,而且还有许多应用。由于迄今没有关于这项任务的基准,我们根据Waymo Opt数据集, 共同设计了一个新的数据集(LIDAR-SOT)和相应的评估协议。我们然后提出一个基于优化的算法,叫做“检测和跟踪”系统,包括点云登记、车辆形状、通信和运动前运动。我们的定量和定性结果证明了我们SOT的效益, 展示了点云(包括LD-AR数据的显示和展示过程数据)如何具有挑战性的案例。最后,AAR-ROD流程应用中的一项数据可能生成S-limalialalalalalalalalalalx数据。