Non-parametric goodness-of-fit testing procedures based on kernel Stein discrepancies (KSD) are promising approaches to validate general unnormalised distributions in various scenarios. Existing works have focused on studying optimal kernel choices to boost test performances. However, the Stein operators are generally non-unique, while different choices of Stein operators can also have considerable effect on the test performances. In this work, we propose a unifying framework, the generalised kernel Stein discrepancy (GKSD), to theoretically compare and interpret different Stein operators in performing the KSD-based goodness-of-fit tests. We derive explicitly that how the proposed GKSD framework generalises existing Stein operators and their corresponding tests. In addition, we show thatGKSD framework can be used as a guide to develop kernel-based non-parametric goodness-of-fit tests for complex new data scenarios, e.g. truncated distributions or compositional data. Experimental results demonstrate that the proposed tests control type-I error well and achieve higher test power than existing approaches, including the test based on maximum-mean-discrepancy (MMD).
翻译:基于内核 Stein 差异( KSD) 的非参数性良好测试程序是证实各种情景中一般非标准化分布的有希望的办法。现有工作的重点是研究最佳内核选择,以提高测试性能。然而,Stein操作员一般不是独有的,而Stein操作员的不同选择也会对测试性能产生相当大的影响。在这项工作中,我们提出了一个统一框架,即通用的内核施用差异(GKSD),从理论上比较和解释不同斯坦操作员在进行基于KSD的 " 良好利益 " 测试时所使用的不同操作员。我们明确指出,拟议的GKSD框架如何概括现有 Stein操作员及其相应的测试。此外,我们表明,GKSD框架可以用作指南,用于为复杂的新数据情景(例如,疏松散的分布或构成数据)开发基于内核的非参数性良好测试。实验结果表明,拟议的测试控制型号I误,并取得比现有方法更高的测试力,包括基于最大平均值的测试。