An attractor decomposition meta-algorithm for solving parity games is given that generalises the classic McNaughton-Zielonka algorithm and its recent quasi-polynomial variants due to Parys (2019), and to Lehtinen, Schewe, and Wojtczak (2019). The central concepts studied and exploited are attractor decompositions of dominia in parity games and the ordered trees that describe the inductive structure of attractor decompositions. The universal algorithm yields McNaughton-Zielonka, Parys, and Lehtinen-Schewe-Wojtczak algorithms as special cases when suitable universal trees are given to it as inputs. The main technical results provide a unified proof of correctness and structural insights into those algorithms. Suitably adapting the universal algorithm for parity games to fixpoint games gives a quasi-polynomial time algorithm to compute nested fixpoints over finite complete lattices. The universal algorithms for parity games and nested fixpoints can be implemented symbolically. It is shown how this can be done with $O(\lg d)$ symbolic space complexity, improving the $O(d \lg n)$ symbolic space complexity achieved by Chatterjee, Dvo\v{r}\'{a}k, Henzinger, and Svozil (2018) for parity games, where $n$ is the number of vertices and $d$ is the number of distinct priorities in a parity game.
翻译:用于解决平价游戏的吸引或分解元体和排序图树的吸引或分解元体,其特征是,由于Parys(2019年)和Lehtinen、Schewe和Wojtczak(2019年)的原因,典型的McNaughton-Zieronka算法及其最近的准极质变方(2019年),以及Lehtinen、Schewe和Wojtczak(2019年)的原因,被广泛使用的核心概念是Dominia的吸引或分解。在平价游戏和描述吸引者分解值结构的定型树中,通用算法可以生成McNaughton-Zieronka、Parys和Lehtinen-Schewe-Wojtczak算法,作为适合通用树的变异质变异体算法的特殊案例。主要技术结果可以统一证明这些算法的正确性和结构。将平价游戏的通用算法调整为固定值的固定值。在固定值上,可以执行平价值的平价值的平价值(美元),在S$的平价组中可以实现。