Deep neural networks need a big amount of training data, while in the real world there is a scarcity of data available for training purposes. To resolve this issue unsupervised methods are used for training with limited data. In this report, we describe the unsupervised semantic feature learning approach for recognition of the geometric transformation applied to the input data. The basic concept of our approach is that if someone is unaware of the objects in the images, he/she would not be able to quantitatively predict the geometric transformation that was applied to them. This self supervised scheme is based on pretext task and the downstream task. The pretext classification task to quantify the geometric transformations should force the CNN to learn high-level salient features of objects useful for image classification. In our baseline model, we define image rotations by multiples of 90 degrees. The CNN trained on this pretext task will be used for the classification of images in the CIFAR-10 dataset as a downstream task. we run the baseline method using various models, including ResNet, DenseNet, VGG-16, and NIN with a varied number of rotations in feature extracting and fine-tuning settings. In extension of this baseline model we experiment with transformations other than rotation in pretext task. We compare performance of selected models in various settings with different transformations applied to images,various data augmentation techniques as well as using different optimizers. This series of different type of experiments will help us demonstrate the recognition accuracy of our self-supervised model when applied to a downstream task of classification.
翻译:深心神经网络需要大量的培训数据,而现实世界则缺乏可供培训使用的数据。为了解决这个问题,使用有限的数据进行培训时使用不受监督的方法。在本报告中,我们描述了用于识别输入数据所用几何转换的未经监督的语义特征学习方法。我们的方法的基本概念是,如果有人不知道图像中的对象,他/她将无法对应用到他们身上的几何转换进行定量预测。这一自我监督的计划基于借口任务和下游任务。量化几何转换的借口分类任务应该迫使CNN学习用于图像分类的物体的高层次特征。在我们的基准模型中,我们用90度的多重定义图像旋转。关于这一任务受过培训的CNN将被用于对CIFAR-10数据集中的图像进行分类,作为一个下游任务。我们使用各种模型,包括ResNet、DenseNet、VGG-16和NIN, 以及不同比例的轮换,我们应用了不同比例的精度精确度变换,我们用不同的数据变换模型来进行不同的测试。我们用不同的数据变换模型进行不同的升级,我们用不同的缩缩缩缩缩的模型进行。