Subclassification and matching are often used to adjust for observed covariates in observational studies; however, they are largely restricted to relatively simple study designs with a binary treatment. One important exception is Lu et al.(2001), who considered optimal pair matching with a continuous treatment dose. In this article, we propose two criteria for optimal subclassification/full matching based on subclass homogeneity with a continuous treatment dose, and propose an efficient polynomial-time algorithm that is guaranteed to find an optimal subclassification with respect to one criterion and serves as a 2-approximation algorithm for the other criterion. We discuss how to incorporate treatment dose and use appropriate penalties to control the number of subclasses in the design. Via extensive simulations, we systematically examine the performance of our proposed method, and demonstrate that combining our proposed subclassification scheme with regression adjustment helps reduce model dependence for parametric causal inference with a continuous treatment dose. We illustrate the new design and how to conduct randomization-based statistical inference under the new design using Medicare and Medicaid claims data to study the effect of transesophageal echocardiography (TEE) during CABG surgery on patients' 30-day mortality rate.
翻译:亚分类和匹配通常用于调整观察研究中观察到的共变体;然而,它们主要限于相对简单的研究设计,采用二元治疗;一个重要的例外是Lu等人(2001年),他认为与连续治疗剂量相匹配的最佳配对符合连续治疗剂量;在本条中,我们提出了基于子类同质与连续治疗剂量的最佳子分类/完全配对的两个标准,并提出了一个高效的多元时间算法,保证找到一种标准的最佳次分类,并作为另一个标准的2类配比算法;我们讨论如何纳入治疗剂量,并使用适当的惩罚来控制设计中的子类数量;通过广泛的模拟,我们系统地审查我们拟议方法的性能,并表明我们拟议的亚分类办法与回归调整相结合有助于减少对参数性因果关系和连续治疗剂量的模型依赖;我们介绍了新设计,以及如何在使用美药和美药援助索赔数据的新设计下进行基于随机化的统计,以研究心血管回心动率对30日病人的影响。