Active Inference (ActInf) is an emerging theory that explains perception and action in biological agents, in terms of minimizing a free energy bound on Bayesian surprise. Goal-directed behavior is elicited by introducing prior beliefs on the underlying generative model. In contrast to prior beliefs, which constrain all realizations of a random variable, we propose an alternative approach through chance constraints, which allow for a (typically small) probability of constraint violation, and demonstrate how such constraints can be used as intrinsic drivers for goal-directed behavior in ActInf. We illustrate how chance-constrained ActInf weights all imposed (prior) constraints on the generative model, allowing e.g., for a trade-off between robust control and empirical chance constraint violation. Secondly, we interpret the proposed solution within a message passing framework. Interestingly, the message passing interpretation is not only relevant to the context of ActInf, but also provides a general purpose approach that can account for chance constraints on graphical models. The chance constraint message updates can then be readily combined with other pre-derived message update rules, without the need for custom derivations. The proposed chance-constrained message passing framework thus accelerates the search for workable models in general, and can be used to complement message-passing formulations on generative neural models.
翻译:积极推论(ActInf)是一个新兴理论,它解释生物制剂的观念和行动,最大限度地减少受巴伊西亚突袭约束的免费能源。目标导向的行为是通过引入对基本基因模型的先入为主的信念来诱导的。与限制随机变数所有实现的先入之见不同的是,我们提出一种通过机会限制的替代方法,这种机会限制允许(通常很小的)受限制的违反概率,并表明如何利用这种限制作为在ActInf中受目标引导的行为的内在驱动因素。我们说明了机会限制的ActInf如何使基因模型受到所有限制(主要),例如允许在稳健的控制和经经验性机会限制的违反之间进行交易。第二,我们在传递信息的框架内解释拟议的解决办法。有趣的是,传递信息的解释不仅与ActInf的背景有关,而且还提供了一种总的目的方法,可以说明对图形模型的风险限制。然后,机会限制信息更新可以很容易地与其他源前信息更新规则结合起来,而不必进行自定义的衍生。拟议的对基因模型加以补充,从而加速搜索。