In the Tensor PCA problem introduced by Richard and Montanari (2014), one is given a dataset consisting of $n$ samples $\mathbf{T}_{1:n}$ of i.i.d. Gaussian tensors of order $k$ with the promise that $\mathbb{E}\mathbf{T}_1$ is a rank-1 tensor and $\|\mathbb{E} \mathbf{T}_1\| = 1$. The goal is to estimate $\mathbb{E} \mathbf{T}_1$. This problem exhibits a large conjectured hard phase when $k>2$: When $d \lesssim n \ll d^{\frac{k}{2}}$ it is information theoretically possible to estimate $\mathbb{E} \mathbf{T}_1$, but no polynomial time estimator is known. We provide a sharp analysis of the optimal sample complexity in the Statistical Query (SQ) model and show that SQ algorithms with polynomial query complexity not only fail to solve Tensor PCA in the conjectured hard phase, but also have a strictly sub-optimal sample complexity compared to some polynomial time estimators such as the Richard-Montanari spectral estimator. Our analysis reveals that the optimal sample complexity in the SQ model depends on whether $\mathbb{E} \mathbf{T}_1$ is symmetric or not. For symmetric, even order tensors, we also isolate a sample size regime in which it is possible to test if $\mathbb{E} \mathbf{T}_1 = \mathbf{0}$ or $\mathbb{E}\mathbf{T}_1 \neq \mathbf{0}$ with polynomially many queries but not estimate $\mathbb{E}\mathbf{T}_1$. Our proofs rely on the Fourier analytic approach of Feldman, Perkins and Vempala (2018) to prove sharp SQ lower bounds.


翻译:在Richard 和 Montanari 推出的 坦萨多尔问题中, 给一个由 $n 样本 $\ mathbf{T\1:n} 美元组成的数据集 。 当 $\ mathb{ E\\mathb{T\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\a\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
专知会员服务
161+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年5月8日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
专知会员服务
161+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2019年5月8日
Top
微信扫码咨询专知VIP会员