A detection system, modeled in a graph, uses "detectors" on a subset of vertices to uniquely identify an "intruder" at any vertex. We consider two types of detection systems: open-locating-dominating (OLD) sets and identifying codes (ICs). An OLD set gives each vertex a unique, non-empty open neighborhood of detectors, while an IC provides a unique, non-empty closed neighborhood of detectors. We explore their fault-tolerant variants: redundant OLD (RED:OLD) sets and redundant ICs (RED:ICs), which ensure that removing/disabling at most one detector guarantees the properties of OLD sets and ICs, respectively. This paper focuses on constructing optimal RED:OLD sets and RED:ICs on the infinite king's grid, and presents the proof for the bounds on their minimum densities; [3/10, 1/3] for RED:OLD sets and [3/11, 1/3] for RED:ICs.
翻译:以图示为模型的探测系统在脊椎子集中使用“ 检测器” 来独特识别任何顶点的“ 入侵器” 。 我们考虑两种类型的探测系统: 开放定位偏差( OLD) 和识别代码( ICs ) 。 旧的一组让每个顶端都有一个独特、 非空的检测器周围, 而 IC 则提供一个独特、 非空的封闭的检测器区。 我们探索了它们的错误容忍变量: 冗余的旧( RED: OLD) 组和冗余的IC( RED: OLD ) 组和 冗余的ICs ( RED: RED: OLD) 组和 ICs 的特性。 本文侧重于在无限王网格上构建最佳的 RED: OLD 组和 RED: ICs: 的 RED: 和 RED: 3 ICs 提供最小密度的界限的证明; [3/10, 1/3] 用于RED: 的RED: OLD 和 [3/11, 1/3 。