Multi-tenancy is essential for unleashing SmartNIC's potential in datacenters. Our systematic analysis in this work shows that existing on-path SmartNICs have resource multiplexing limitations. For example, existing solutions lack multi-tenancy capabilities such as performance isolation and QoS provisioning for compute and IO resources. Compared to standard NIC data paths with a well-defined set of offloaded functions, unpredictable execution times of SmartNIC kernels make conventional approaches for multi-tenancy and QoS insufficient. We fill this gap with OSMOSIS, a SmartNICs resource manager co-design. OSMOSIS extends existing OS mechanisms to enable dynamic hardware resource multiplexing on top of the on-path packet processing data plane. We implement OSMOSIS within an open-source RISC-V-based 400Gbit/s SmartNIC. Our performance results demonstrate that OSMOSIS fully supports multi-tenancy and enables broader adoption of SmartNICs in datacenters with low overhead.
翻译:暂无翻译