Manual repair tasks in the industry of maintenance, repair, and overhaul require experience and object-specific information. Today, many of these repair tasks are still performed and documented with inefficient paper documents. Cognitive assistance systems have the potential to reduce costs, errors, and mental workload by providing all required information digitally. In this case study, we present an assistance system for object-specific repair tasks for turbine blades. The assistance system provides digital work instructions and uses augmented reality to display spatial information. In a user study with ten experienced metalworkers performing a familiar repair task, we compare time to task completion, subjective workload, and system usability of the new assistance system to their established paper-based workflow. All participants stated that they preferred the assistance system over the paper documents. The results of the study show that the manual repair task can be completed 21 % faster and with a 26 % lower perceived workload using the assistance system.
翻译:维修、维修和大修行业的手工修理任务需要经验和特定目标的信息。今天,许多这类修理任务仍然以低效率的纸质文件进行和记录。认知援助系统有可能通过提供所有所需的数字信息来降低成本、错误和精神工作量。在本案例研究中,我们为涡轮机叶片的物体修理任务提出了一个援助系统。援助系统提供数字工作指示,并使用扩大的现实来显示空间信息。在一项用户研究中,有10名有经验的金属工人从事了熟悉的修理任务,我们把时间与任务完成、主观工作量和新援助系统的可用性与其既定的纸质工作流程进行比较。所有参与者都表示,他们倾向于使用援助系统而不是纸质文件。研究结果显示,手工修理任务可以更快完成21%,而使用援助系统的工作量要低26%。