Background: Despite similar education and background, programmers can exhibit vast differences in efficacy. While research has identified some potential factors, such as programming experience and domain knowledge, the effect of these factors on programmers' efficacy is not well understood. Aims: We aim at unraveling the relationship between efficacy (speed and correctness) and measures of programming experience. We further investigate the correlates of programmer efficacy in terms of reading behavior and cognitive load. Method: For this purpose, we conducted a controlled experiment with 37~participants using electroencephalography (EEG) and eye tracking. We asked participants to comprehend up to 32 Java source-code snippets and observed their eye gaze and neural correlates of cognitive load. We analyzed the correlation of participants' efficacy with popular programming experience measures. Results: We found that programmers with high efficacy read source code more targeted and with lower cognitive load. Commonly used experience levels do not predict programmer efficacy well, but self-estimation and indicators of learning eagerness are fairly accurate. Implications: The identified correlates of programmer efficacy can be used for future research and practice (e.g., hiring). Future research should also consider efficacy as a group sampling method, rather than using simple experience measures.


翻译:尽管存在类似的教育和背景,程序员在效果方面可以表现出巨大的差异。虽然研究已经查明了一些潜在因素,例如编程经验和领域知识,但这些因素对程序员效能的影响并没有得到很好的理解。目标:我们的目标是解析效能(速度和正确性)与编程经验衡量方法之间的关系。我们进一步调查程序员阅读行为和认知负荷方面效能的关联。方法:为此目的,我们利用电脑分析法和眼睛跟踪对37~参与者进行了控制实验。我们要求参与者了解到32个爪哇源代码片段,并观察其眼睛的外观和认知负荷的神经相关性。我们分析了参与者效能与流行的编程经验措施的关联性。结果:我们发现,高功效程序员阅读源代码更具有针对性,认知负荷更低。通常使用的经验水平并没有很好地预测程序员的效能,但自我估计和学习渴望的指标相当准确。影响:已查明的程序员效能的关联性可以用于未来的研究和实践(例如,聘用)。未来研究还应将效能作为一种方法,而不是使用简单的抽样。</s>

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员