The exponential growth of wireless devices and stringent reliability requirements of emerging applications demand fundamental improvements in distributed channel access mechanisms for unlicensed bands. Current Wi-Fi systems, which rely on binary exponential backoff (BEB), suffer from suboptimal collision resolution in dense deployments and persistent fairness challenges due to inherent randomness. This paper introduces a multi-agent reinforcement learning framework that integrates artificial intelligence (AI) optimization with legacy device coexistence. We first develop a dynamic backoff selection mechanism that adapts to real-time channel conditions through access deferral events while maintaining full compatibility with conventional CSMA/CA operations. Second, we introduce a fairness quantification metric aligned with enhanced distributed channel access (EDCA) principles to ensure equitable medium access opportunities. Finally, we propose a centralized training decentralized execution (CTDE) architecture incorporating neighborhood activity patterns as observational inputs, optimized via constrained multi-agent proximal policy optimization (MAPPO) to jointly minimize collisions and guarantee fairness. Experimental results demonstrate that our solution significantly reduces collision probability compared to conventional BEB while preserving backward compatibility with commercial Wi-Fi devices. The proposed fairness metric effectively eliminates starvation risks in heterogeneous scenarios.
翻译:暂无翻译