Broadcast consensus protocols (BCPs) are a model of computation, in which anonymous, identical, finite-state agents compute by sending/receiving global broadcasts. BCPs are known to compute all number predicates in $\mathsf{NL}=\mathsf{NSPACE}(\log n)$ where $n$ is the number of agents. They can be considered an extension of the well-established model of population protocols. This paper investigates execution time characteristics of BCPs. We show that every predicate computable by population protocols is computable by a BCP with expected $\mathcal{O}(n \log n)$ interactions, which is asymptotically optimal. We further show that every log-space, randomized Turing machine can be simulated by a BCP with $\mathcal{O}(n \log n \cdot T)$ interactions in expectation, where $T$ is the expected runtime of the Turing machine. This allows us to characterise polynomial-time BCPs as computing exactly the number predicates in $\mathsf{ZPL}$, i.e. predicates decidable by log-space bounded randomised Turing machine with zero-error in expected polynomial time where the input is encoded as unary.
翻译:广播共识协议( BCP) 是一种计算模型, 其中匿名、 相同、 限定状态的代理商通过发送/ 接收全球广播来计算。 BCP 已知计算所有数字的前提值为$\mathsf{NL ⁇ mathsf{NSPACE} (\log nn) 美元, 美元是代理商的数量。 它们可以被视为完善的人口协议模式的延伸。 本文调查 BCP 的执行时间特性 。 我们显示, 人口协议的每个上游计算器都由 BCP 以预期的$\mathcal{O} (n\log nn n) 来计算。 BCP 的相互作用值是最小最佳的。 我们进一步显示, 每一个日志空间、 随机化的图腾机都可以用$\mathcal{O} (n\log n\cdott T) 来模拟预期的人口协议模式的延伸。 $T$T 是图灵机的预期运行时间 。 这使得我们能够将 iCP minal- imal ial iCP 和 ical rdeal am exaldeal as drobal logmental 一起在 ribal_ droom 中计算精确的日历, 。