Deep learning (DL) based hyperspectral images (HSIs) denoising approaches directly learn the nonlinear mapping between observed noisy images and underlying clean images. They normally do not consider the physical characteristics of HSIs, therefore making them lack of interpretability that is key to understand their denoising mechanism.. In order to tackle this problem, we introduce a novel model guided interpretable network for HSI denoising. Specifically, fully considering the spatial redundancy, spectral low-rankness and spectral-spatial properties of HSIs, we first establish a subspace based multi-dimensional sparse model. This model first projects the observed HSIs into a low-dimensional orthogonal subspace, and then represents the projected image with a multidimensional dictionary. After that, the model is unfolded into an end-to-end network named SMDS-Net whose fundamental modules are seamlessly connected with the denoising procedure and optimization of the model. This makes SMDS-Net convey clear physical meanings, i.e., learning the low-rankness and sparsity of HSIs. Finally, all key variables including dictionaries and thresholding parameters are obtained by the end-to-end training. Extensive experiments and comprehensive analysis confirm the denoising ability and interpretability of our method against the state-of-the-art HSI denoising methods.
翻译:深度学习( DL) 基于超光谱图像( HSIs) 的深度学习( 高光谱图像) 解密方法直接学习观测到的噪音图像和基本清洁图像之间的非线性绘图, 通常不考虑HSI的物理特性, 因此它们缺乏理解其去除机制的关键解释性。 为了解决这个问题, 我们引入了一个新的模型可解释的HSI解密网络。 具体地说, 我们充分考虑到HSI的空间冗余、 光谱低级别和光谱空间特性, 我们首先建立一个基于子空间的多维稀释模型。 这个模型首先将所观测到的 HSI 投射到一个低维度或远度的子空间, 然后用一个多维字典来代表所预测的图像。 之后, 该模型将发展成一个名为 SMDS- Net 的端端端网络, 其基本模块与脱色程序和模型的优化紧密相连。 这样, SMDS- Net 就能传达清晰的物理含义, 即学习HSI 的低级和宽度分散模式。 最后, 所有关键变量, 包括HSI 的深度和深度分析, 通过HSI 级和深度分析, 通过HSI 最终的方法, 的升级和深度分析, 和深度分析, 和深度分析。