Shuffle model of differential privacy is a novel distributed privacy model based on a combination of local privacy mechanisms and a trusted shuffler. It has been shown that the additional randomisation provided by the shuffler improves privacy bounds compared to the purely local mechanisms. Accounting tight bounds, especially for multi-message protocols, is complicated by the complexity brought by the shuffler. The recently proposed Fourier Accountant for evaluating $(\varepsilon,\delta)$-differential privacy guarantees has been shown to give tighter bounds than commonly used methods for non-adaptive compositions of various complex mechanisms. In this paper we show how to compute tight privacy bounds using the Fourier Accountant for multi-message versions of several ubiquitous mechanisms in the shuffle model and demonstrate looseness of the existing bounds in the literature.
翻译:不同隐私的打碎模式是一种新颖的分布式隐私模式,其基础是当地隐私机制和信任的打碎器。 事实证明,与纯粹的地方机制相比,由打碎器提供的额外随机化改善了隐私界限。 会计严格界限,特别是多信息协议,由于打碎器带来的复杂性而变得复杂。 最近提议的用于评估$(varepsilon,\delta)美元差异性隐私保障的Fourier会计家显示,与各种复杂机制的非适应性构成通常使用的方法相比,它提供了更为严格的界限。 在本文中,我们展示了如何使用Fourier会计家来计算各种多信息版本的严格隐私界限,包括一些在打碎机模式中普遍存在的机制,并展示文献中现有界限的松散。