The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years.


翻译:需要评估复杂系统的稳健性能,并应对更严格的监管流程(安全、安全、环境控制和健康影响等),这导致出现了一个新的工业模拟挑战:在处理复杂的数字模拟框架时要考虑到不确定性。因此,一些工业公司和学术机构共同努力产生了一种通用方法。 EDF R&D、Airbus Group和Phimeca Engineering于2005年初开始合作,由IMACS于2014年加入,目的是开发一个开放源软件平台,专门通过预测性方法传播不确定性,称为开放源处理不确定性的OpenTURNS。OpenTURNS处理不确定性、风险'N统计。OpenTURNS处理与不确定性相关的具体工业挑战,即透明度、通用性、模块性和多可获取性。本文侧重于OpenTURNS,并介绍了其主要特点:OpenTURNS是LGPL许可证下的一个开放源软件,作为C++图书馆和Python TUI,在Linux和视窗环境下运作。所有方法工具都在本文的不同章节中描述:不确定性的量化、不确定性、灵敏度、感知度分析以及河系的内分析。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员