Optimal transport induces the Earth Mover's (Wasserstein) distance between probability distributions, a geometric divergence that is relevant to a wide range of problems. Over the last decade, two relaxations of optimal transport have been studied in depth: unbalanced transport, which is robust to the presence of outliers and can be used when distributions don't have the same total mass; entropy-regularized transport, which is robust to sampling noise and lends itself to fast computations using the Sinkhorn algorithm. This paper combines both lines of work to put robust optimal transport on solid ground. Our main contribution is a generalization of the Sinkhorn algorithm to unbalanced transport: our method alternates between the standard Sinkhorn updates and the pointwise application of a contractive function. This implies that entropic transport solvers on grid images, point clouds and sampled distributions can all be modified easily to support unbalanced transport, with a proof of linear convergence that holds in all settings. We then show how to use this method to define pseudo-distances on the full space of positive measures that satisfy key geometric axioms: (unbalanced) Sinkhorn divergences are differentiable, positive, definite, convex, statistically robust and avoid any "entropic bias" towards a shrinkage of the measures' supports.
翻译:最佳运输让地球移动器( Wasserstein) 在概率分布之间产生距离( Wasserstein) 最佳运输法( Wasserstein) 的距离, 这是一种与一系列广泛问题相关的几何差异。 在过去的十年里, 已经深入研究了两种最佳运输方法的宽度: 不平衡的运输, 它对外线的存在非常强大, 并且当分布的分布质量不完全相同时, 可以使用这种运输法; 丙烯- 正规化的运输, 它对于采样噪音非常有力, 并且能够使用Sinkhorn算法进行快速计算。 本文将两种工作结合起来, 在固体地面上进行强力的最佳运输。 我们的主要贡献是将Sinkhorn算法普遍化为不平衡的运输: 我们的方法在标准Sinkhorn 更新时, 和 合同性功能的运用之间, 我们的方法是: 电网图、 点云和样本分布分布都很容易修改, 从而支持不平衡的线性融合。 然后我们展示如何使用这种方法在满足关键测深度对等测量的精确度测量的测量度测量度测量的完整空间上, 。 ( ) 任何精确的统计偏差是 。