Optimal transport induces the Earth Mover's (Wasserstein) distance between probability distributions, a geometric divergence that is relevant to a wide range of problems. Over the last decade, two relaxations of optimal transport have been studied in depth: unbalanced transport, which is robust to the presence of outliers and can be used when distributions don't have the same total mass; entropy-regularized transport, which is robust to sampling noise and lends itself to fast computations using the Sinkhorn algorithm. This paper combines both lines of work to put robust optimal transport on solid ground. Our main contribution is a generalization of the Sinkhorn algorithm to unbalanced transport: our method alternates between the standard Sinkhorn updates and the pointwise application of a contractive function. This implies that entropic transport solvers on grid images, point clouds and sampled distributions can all be modified easily to support unbalanced transport, with a proof of linear convergence that holds in all settings. We then show how to use this method to define pseudo-distances on the full space of positive measures that satisfy key geometric axioms: (unbalanced) Sinkhorn divergences are differentiable, positive, definite, convex, statistically robust and avoid any "entropic bias" towards a shrinkage of the measures' supports.


翻译:最佳运输让地球移动器( Wasserstein) 在概率分布之间产生距离( Wasserstein) 最佳运输法( Wasserstein) 的距离, 这是一种与一系列广泛问题相关的几何差异。 在过去的十年里, 已经深入研究了两种最佳运输方法的宽度: 不平衡的运输, 它对外线的存在非常强大, 并且当分布的分布质量不完全相同时, 可以使用这种运输法; 丙烯- 正规化的运输, 它对于采样噪音非常有力, 并且能够使用Sinkhorn算法进行快速计算。 本文将两种工作结合起来, 在固体地面上进行强力的最佳运输。 我们的主要贡献是将Sinkhorn算法普遍化为不平衡的运输: 我们的方法在标准Sinkhorn 更新时, 和 合同性功能的运用之间, 我们的方法是: 电网图、 点云和样本分布分布都很容易修改, 从而支持不平衡的线性融合。 然后我们展示如何使用这种方法在满足关键测深度对等测量的精确度测量的测量度测量度测量的完整空间上, 。 ( ) 任何精确的统计偏差是 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
0+阅读 · 2023年3月7日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员