Building on work of Kontsevich, we introduce a definition of the entropy of a finite probability distribution in which the "probabilities" are integers modulo a prime p. The entropy, too, is an integer mod p. Entropy mod p is shown to be uniquely characterized by a functional equation identical to the one that characterizes ordinary Shannon entropy. We also establish a sense in which certain real entropies have residues mod p, connecting the concepts of entropy over R and over Z/pZ. Finally, entropy mod p is expressed as a polynomial which is shown to satisfy several identities, linking into work of Cathelineau, Elbaz-Vincent and Gangl on polylogarithms.
翻译:以Kontsevich的工作为基础,我们引入了“概率”为整数元模模L的有限概率分布的酶定义。 变数也是一种整数模版p。 Entropy modp 被证明具有独特的特征,其功能等式与普通的香农昆虫的特性相同。 我们还建立了一种感知,即某些真实的异种有残留物的模型p,将R和Z/PZ的变数概念连接起来。 最后,变数模型p 表现为一种多元性,可以满足几种特性,与Cathelineau、Elbaz-Vincent和Gangl关于多元虫的功能相联系。