Image partitioning, or segmentation without semantics, is the task of decomposing an image into distinct segments, or equivalently to detect closed contours. Most prior work either requires seeds, one per segment; or a threshold; or formulates the task as multicut / correlation clustering, an NP-hard problem. Here, we propose an efficient algorithm for graph partitioning, the "Mutex Watershed''. Unlike seeded watershed, the algorithm can accommodate not only attractive but also repulsive cues, allowing it to find a previously unspecified number of segments without the need for explicit seeds or a tunable threshold. We also prove that this simple algorithm solves to global optimality an objective function that is intimately related to the multicut / correlation clustering integer linear programming formulation. The algorithm is deterministic, very simple to implement, and has empirically linearithmic complexity. When presented with short-range attractive and long-range repulsive cues from a deep neural network, the Mutex Watershed gives the best results currently known for the competitive ISBI 2012 EM segmentation benchmark.


翻译:图像分割, 或没有语义分解, 是将图像分解成不同部分的任务, 或相等于探测封闭的轮廓。 多数先前的工作要么需要种子, 每一段一个, 或一个阈值; 或者将任务表述为多切/ 相关组合, 一个NP- 硬问题 。 在这里, 我们建议了图形分割的高效算法, “ Mutex washed ” 。 与种子集水区不同, 算法不仅可以容纳吸引人, 也可以容纳令人厌恶的提示, 从而可以找到以前未指明的段数, 不需要明确的种子或可调料的阈值。 我们还证明, 这个简单算法可以解决一个与多切/ 相关组合整线性编程配制密切相关的目标功能, 与多切/ 相关组合整线性编程配制密切相关的全球最佳性 。 算法是确定性的, 很简单的, 执行, 并且具有实验性的线性复杂性。 当从一个深神经网络展示出短距离有吸引力和长距离的反导线性提示时, 时, Mutex Water washshed shed shed shed 最佳的结果目前为具有国际SBI 2012 EM 竞争的 ISBI EM 基准的最佳结果 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【AAAI2021】元学习器的冷启动序列推荐
专知会员服务
41+阅读 · 2020年12月19日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Graph Balancing with Orientation Costs
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
【AAAI2021】元学习器的冷启动序列推荐
专知会员服务
41+阅读 · 2020年12月19日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Graph Balancing with Orientation Costs
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
6+阅读 · 2018年10月3日
Top
微信扫码咨询专知VIP会员