A $k$-additive spanner of a graph is a subgraph that preserves the distance between any two nodes up to a total additive error of $+k$. Efficient algorithms have been devised for constructing 2 [Aingworth et al. SIAM '99], 6 [Baswana et al. ACM '10, Woodruff ICALP '13], and 8-additive spanners [Knudsen '17], but no efficient algorithms for 4-additive spanners have yet been discovered. In this paper we present a modification of Chechik's 4-additive spanner construction [Chechik SODA '13] that produces a 4-additive spanner on $\Oish(n^{7/5})$ edges, with an improved runtime of $\Oish(mn^{3/5})$ from $O(mn)$. We also discuss generalizations to the setting of weighted additive spanners.
翻译:图表中一个 $k$- additive spanter 是一个子仪, 保存两个节点之间的距离, 直至一个总添加错误为$+k$。 已经设计了高效算法, 用于建造 2 [ Aingworth 等人 SIAM'99] 、 6 [ Baswana 等人 ACM'10, Woodruff articalP'13] 和 8 - additive spanners [Knudsen'17], 但是尚未发现4 dippitive spiers 的有效算法 。 在本文中我们介绍了对 Chichik 的 4 additive spenerner 建筑[ Chechik SODA'13] 的修改, 以 $\Oish (n ⁇ 7/5} 美元边缘生产一个 4ditive spanterner, 并改进运行时间从 $Osh( mn) $@ 3/5} 。 我们还讨论对加权添加加比度的加贝纳的概括 。