Learned embeddings are widely used to obtain concise data representation and enable transfer learning between different data sets and tasks. In this paper, we present Silhouette, our approach that leverages publicly-available performance data sets to learn CPU embeddings. We show how these embeddings enable transfer learning between data sets of different types and sizes. Each of these scenarios leads to an improvement in accuracy for the target data set.
翻译:学习嵌入系统被广泛用于获取简明的数据代表,并能够在不同数据集和任务之间进行传输学习。在本文件中,我们介绍了Silhouette,这是我们利用公开可用的业绩数据集学习CPU嵌入系统的方法。我们展示了这些嵌入系统如何在不同类型和大小的数据集之间进行传输学习。其中每一种情景都提高了目标数据集的准确性。