Deep convolutional neural networks (CNNs) have shown outstanding performance in the task of semantically segmenting images. Applying the same methods on 3D data still poses challenges due to the heavy memory requirements and the lack of structured data. Here, we propose LatticeNet, a novel approach for 3D semantic segmentation, which takes raw point clouds as input. A PointNet describes the local geometry which we embed into a sparse permutohedral lattice. The lattice allows for fast convolutions while keeping a low memory footprint. Further, we introduce DeformSlice, a novel learned data-dependent interpolation for projecting lattice features back onto the point cloud. We present results of 3D segmentation on multiple datasets where our method achieves state-of-the-art performance. We also extend and evaluate our network for instance and dynamic object segmentation.
翻译:深卷动神经网络(CNNs) 显示了在静态分割图像任务方面的杰出表现。 对 3D 数据应用同样的方法仍然由于存储要求繁重和缺乏结构化数据而构成挑战。 在这里, 我们提议使用 LatticesNet, 3D 语义分割新颖的方法, 将原始点云作为输入。 一个点网络描述了我们嵌入一个稀疏的顶层的本地几何。 lattic 允许在保持低记忆足迹的同时快速演变。 此外, 我们引入了DeforSlice, 这是一种新颖的基于数据、 向点云投影的拉蒂特征的基于数据的互换方法。 我们展示了我们的方法在多数据集上实现最新性能的三维分解结果。 我们还扩展和评估我们的网络, 以实例和动态对象分割为例。