We propose a simple method for automatic speech recognition (ASR) by fine-tuning BERT, which is a language model (LM) trained on large-scale unlabeled text data and can generate rich contextual representations. Our assumption is that given a history context sequence, a powerful LM can narrow the range of possible choices and the speech signal can be used as a simple clue. Hence, comparing to conventional ASR systems that train a powerful acoustic model (AM) from scratch, we believe that speech recognition is possible by simply fine-tuning a BERT model. As an initial study, we demonstrate the effectiveness of the proposed idea on the AISHELL dataset and show that stacking a very simple AM on top of BERT can yield reasonable performance.
翻译:我们提出一个简单的方法,通过微调BERT自动语音识别(ASR),这是一种语言模型,受过大规模无标签文本数据培训,可以产生丰富的背景陈述。我们的假设是,根据历史背景序列,强大的LM可以缩小可能的选择范围,语言信号可以作为一个简单线索使用。因此,与常规的ASR系统相比,从零开始培养强大的声学模型(AM),我们认为只要微调BERT模型就有可能实现语音识别。作为初步研究,我们展示了AISELL数据集拟议想法的有效性,并表明在BERT上堆叠一个非常简单的AM可以产生合理的性能。