Probabilistic, hierarchically coherent forecasting is a key problem in many practical forecasting applications -- the goal is to obtain coherent probabilistic predictions for a large number of time series arranged in a pre-specified tree hierarchy. In this paper, we present a probabilistic top-down approach to hierarchical forecasting that uses a novel attention-based RNN model to learn the distribution of the proportions according to which each parent prediction is split among its children nodes at any point in time. These probabilistic proportions are then coupled with an independent univariate probabilistic forecasting model for the root time series. The resulting forecasts are naturally coherent, and provide probabilistic predictions over all time series in the hierarchy. We experiment on several public datasets and demonstrate significant improvements up to 27% on most datasets compared to state-of-the-art probabilistic hierarchical models. Finally, we also provide theoretical justification for the superiority of our top-down approach compared to traditional bottom-up modeling.
翻译:概率、等级一致的预测是许多实际预测应用中的一个关键问题 -- -- 目标是为在事先指定的树级结构中安排的大量时间序列取得一致的概率预测。在本文中,我们提出了一个对等级预测的概率自上而下的方法,这种方法使用以关注为基础的新颖的 RNN 模型来了解每个父母的预测在任何时刻在子女节点中分布的比例分布情况。这些概率比例随后与根时序列独立的单向性概率预测模型相配合。由此产生的预测是自然一致的,并且为等级结构中的所有时间序列提供概率预测。我们在几个公共数据集上进行了实验,并展示了大多数数据集与最先进的概率性等级模型相比高达27%的显著改进。最后,我们还为我们的自上而下方法相对于传统的自下而上的模型的优越性提供了理论依据。