Great research efforts have been devoted to exploiting deep neural networks in stock prediction. While long-range dependencies and chaotic property are still two major issues that lower the performance of state-of-the-art deep learning models in forecasting future price trends. In this study, we propose a novel framework to address both issues. Specifically, in terms of transforming time series into complex networks, we convert market price series into graphs. Then, structural information, referring to associations among temporal points and the node weights, is extracted from the mapped graphs to resolve the problems regarding long-range dependencies and the chaotic property. We take graph embeddings to represent the associations among temporal points as the prediction model inputs. Node weights are used as a priori knowledge to enhance the learning of temporal attention. The effectiveness of our proposed framework is validated using real-world stock data, and our approach obtains the best performance among several state-of-the-art benchmarks. Moreover, in the conducted trading simulations, our framework further obtains the highest cumulative profits. Our results supplement the existing applications of complex network methods in the financial realm and provide insightful implications for investment applications regarding decision support in financial markets.


翻译:虽然长期依赖性和混乱财产仍然是降低预测未来价格趋势方面最先进的深层次学习模型表现的两个主要问题,但我们在这项研究中提出了一个解决这两个问题的新框架,具体地说,将时间序列转换成复杂的网络,我们将市场价格序列转换成图表;然后,从地图图中提取结构信息,涉及时间点和节点重量之间的关联,以解决长期依赖性和混乱财产方面的问题。我们用图表嵌入图来代表时间点之间的关联,作为预测模型投入。将节点权重作为先行知识用来加强时间关注的学习。我们拟议框架的有效性利用现实世界存量数据得到验证,我们的方法在几个最先进的基准中取得了最佳的绩效。此外,在进行的交易模拟中,我们的框架还获得了最高的累积利润。我们的成果补充了金融领域复杂的网络方法的现有应用,并为金融市场决策支持的投资应用提供了深刻的影响。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
系列教程GNN-algorithms之七:《图同构网络—GIN》
专知会员服务
47+阅读 · 2020年8月9日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Type-augmented Relation Prediction in Knowledge Graphs
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
6+阅读 · 2020年2月15日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员