We consider the problem of computing the (two-sided) Hausdorff distance between the unit $p_1$ and $p_2$ norm balls in finite dimensional Euclidean space for $1 < p_1 < p_2 \leq \infty$, and derive a closed-form formula for the same. When the two different norm balls are transformed via a common linear map, we obtain several estimates for the Hausdorff distance between the resulting convex sets. These estimates upper bound the Hausdorff distance or its expectation, depending on whether the linear map is arbitrary or random. We then generalize the developments for the Hausdorff distance between two set-valued integrals obtained by applying a parametric family of linear maps to the unit norm balls, and then taking the Minkowski sums of the resulting sets in a limiting sense. To illustrate an application, we show that the problem of computing the Hausdorff distance between the reach sets of a linear dynamical system with different unit norm ball-valued input uncertainties, reduces to this set-valued integral setting.
翻译:我们考虑的是计算(双向)Hausdorf 单位1美元和美元2美元标准球在一定维度Euclidean空间1美元 < p_1 < p_2\leq\infty$之间的距离的问题,并得出一个相同的封闭式公式。当两个不同的标准球通过共同线性图转换时,我们获得了Hausdorf 相继的距离的估计值。这些估计值是Hausdorf 距离的上限,还是它的预期值,取决于线性地图是任意的还是随机的。然后我们将Hausdorf 距离在两个定值的集成体之间,通过对单位规范球应用直线性地图的参数组群,然后从狭义上取出结果组的Minkowski总和值。为了说明一个应用,我们表明计算具有不同单位规范球值输入不确定性的线性动态系统距离之间的Hausdorf 的问题,将问题缩小到这个设定值的集值综合设置。