In this work, we present novel protocols over rings for semi-honest secure three-party and malicious four-party computation with one corruption. Our protocols are optimized for heterogeneous network settings. $P_1$ and $P_2$ do not need to communicate with each other, while $P_1$ and $P_3$ communicate only in the offline phase in a single communication round. Our four-party protocol additionally requires $P_4$ to only communicate with $P_1$ in the offline phase in a single communication round. Thus, only $P_2$ and $P_3$ need to share a low latency, high bandwidth channel to achieve fast runtimes. We list several applications where this property can be useful. For instance, if $P_1$ and $P_2$ want to perform a two-party computation but share a weak network link they can utilize an auxiliary $P_3$ with a strong network link to $P_2$ to accelerate the secure computation. Our three-party protocol requires 1 domain element of global communication in the offline phase and 2 elements of global communication in the online phase. Our four-party protocol requires 2 elements of global communication in the offline phase and 3 elements of global communication in the online phase. This protocol can provide fairness and guaranteed output delivery. The best previous four-party malicious protocols with one corruption require 6 elements of global communication. We also show different ways of how to transform our protocols into homogeneous protocols where parties communicate equally on all links at the same global communication complexity.


翻译:在这项工作中,我们为半诚实、安全、三方和恶意的四方计算提供环状的新协议,使用一种腐败。我们的协议在各种网络设置中是优化的。$P_1美元和$P_2美元不需要相互沟通,而$P_1美元和$P_3美元只是在单轮通信的离线阶段进行沟通。我们的四方协议额外要求$P_4美元仅用于在单轮通信的离线阶段与美元P_1美元进行沟通。因此,我们三方协议只需要在离线阶段与美元P_2美元和美元P_3美元共享一个低延迟的、高带宽的频道以达到快速运行时间。我们列出了若干应用程序,而这些应用程序可以不需要相互沟通。例如,如果$P_1美元和$P_3美元只要在单轮通信的离线阶段进行双向计算,但共享一个薄弱的网络链接,它们可以使用美元3美元辅助的网络连接到6P_2美元来加速安全计算。我们的三方协议在离线阶段只需要一个全球通信的域元素,全球通信的离线阶段和2个全球通信的在线通信的连接中,需要一个全球通信中一个最有保证的版本。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员