The study of market equilibria is central to economic theory, particularly in efficiently allocating scarce resources. However, the computation of equilibrium prices at which the supply of goods matches their demand typically relies on having access to complete information on private attributes of agents, e.g., suppliers' cost functions, which are often unavailable in practice. Motivated by this practical consideration, we consider the problem of setting equilibrium prices in the incomplete information setting wherein a market operator seeks to satisfy the customer demand for a commodity by purchasing the required amount from competing suppliers with privately known cost functions unknown to the market operator. In this incomplete information setting, we consider the online learning problem of learning equilibrium prices over time while jointly optimizing three performance metrics -- unmet demand, cost regret, and payment regret -- pertinent in the context of equilibrium pricing over a horizon of $T$ periods. We first consider the setting when suppliers' cost functions are fixed and develop algorithms that achieve a regret of $O(\log \log T)$ when the customer demand is constant over time, or $O(\sqrt{T} \log \log T)$ when the demand is variable over time. Next, we consider the setting when the suppliers' cost functions can vary over time and illustrate that no online algorithm can achieve sublinear regret on all three metrics when the market operator has no information about how the cost functions change over time. Thus, we consider an augmented setting wherein the operator has access to hints/contexts that, without revealing the complete specification of the cost functions, reflect the variation in the cost functions over time and propose an algorithm with sublinear regret in this augmented setting.
翻译:在经济理论中,市场均衡的研究是核心问题,特别是在有效地分配稀缺资源方面是至关重要的。然而,以货物供应与需求匹配的均衡价格计算通常依赖于对代理人的私人属性——例如,供应商的成本函数——的完整信息,而这在实践中通常是不可用的。在这个实践考虑的背景下,我们考虑了在不完全信息下市场均衡定价的问题,在该问题中,市场运营商试图通过从具有私有已知成本函数的竞争供应商中购买所需数量,以满足商品的顾客需求。在这种不完全信息的情况下,我们考虑在线学习方法,学习在一段时间内的均衡价格,同时优化三个与均衡定价相关的性能指标——未满足的需求,成本后悔和支付后悔——在时间段$T$内。我们首先考虑供应商的成本函数固定的情况,并制定算法,在顾客需求随时间不变时实现$O(\log \log T)$的后悔度,或者在需求随时间变化时实现$O(\sqrt{T} \log \log T)$的后悔度。接下来,我们考虑供应商的成本函数可以随时间变化的情况,并指出当市场运营商对成本函数的变化没有任何信息时,没有在线算法能够同时实现三个性能指标的亚线性的后悔度。因此,我们考虑了一个增强的设置,其中运营商可以通过提示/上下文得知成本函数如何随时间变化(而不透露成本函数的完整规范),并提出了一种在这个增强的设置下具有亚线性后悔度的算法。