Pruning is an effective method to reduce the memory footprint and FLOPs associated with neural network models. However, existing structured-pruning methods often result in significant accuracy degradation for moderate pruning levels. To address this problem, we introduce a new Hessian Aware Pruning (HAP) method coupled with a Neural Implant approach that uses second-order sensitivity as a metric for structured pruning. The basic idea is to prune insensitive components and to use a Neural Implant for moderately sensitive components, instead of completely pruning them. For the latter approach, the moderately sensitive components are replaced with with a low rank implant that is smaller and less computationally expensive than the original component. We use the relative Hessian trace to measure sensitivity, as opposed to the magnitude based sensitivity metric commonly used in the literature. We test HAP for both computer vision tasks and natural language tasks, and we achieve new state-of-the-art results. Specifically, HAP achieves less than $0.1\%$/$0.5\%$ degradation on PreResNet29/ResNet50 (CIFAR-10/ImageNet) with more than 70\%/50\% of parameters pruned. Meanwhile, HAP also achieves significantly better performance (up to 0.8\% with 60\% of parameters pruned) as compared to gradient based method for head pruning on transformer-based models. The framework has been open sourced and available online.
翻译:为解决这一问题,我们引入了一种新的赫森人意识普鲁宁(HAP)方法,同时采用神经植入法,将二阶敏感度用作结构裁剪的衡量标准。基本的想法是,将敏感度不高的部件和中度敏感部件使用神经植入器,而不是完全剪裁。对于后一种方法,中度敏感部件被替换为比原部件更小、计算成本更低的低级植入器。我们采用相对的赫森人感知普鲁宁(HAP)方法来测量敏感度,而不是文献中常用的基于敏感度的神经植入法。我们测试二阶敏感度的神经植入法,作为结构裁剪的衡量标准。我们用新的最新技术成果,具体地说,HAP在PRENet29/ResNet50(CIFAR-10/ImageNet50)(CIFAR-10-ImageNet) 中,以比HFAR-NER_Q_P__Q__BAR_BAR_BAR_BAR_BAR_P_BAR_BAR_BAR_P_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR____BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR______BAR_BAR_