Dropout is a well-known regularization method by sampling a sub-network from a larger deep neural network and training different sub-networks on different subsets of the data. Inspired by the dropout concept, we propose EDropout as an energy-based framework for pruning neural networks in classification tasks. In this approach, a set of binary pruning state vectors (population) represents a set of corresponding sub-networks from an arbitrary provided original neural network. An energy loss function assigns a scalar energy loss value to each pruning state. The energy-based model stochastically evolves the population to find states with lower energy loss. The best pruning state is then selected and applied to the original network. Similar to dropout, the kept weights are updated using backpropagation in a probabilistic model. The energy-based model again searches for better pruning states and the cycle continuous. Indeed, this procedure is in fact switching between the energy model, which manages the pruning states, and the probabilistic model, which updates the temporarily unpruned weights, in each iteration. The population can dynamically converge to a pruning state. This can be interpreted as dropout leading to pruning the network. From an implementation perspective, EDropout can prune typical neural networks without modification of the network architecture. We evaluated the proposed method on different flavours of ResNets, AlexNet, and SqueezeNet on the Kuzushiji, Fashion, CIFAR-10, CIFAR-100, and Flowers datasets, and compared the pruning rate and classification performance of the models. On average the networks trained with EDropout achieved a pruning rate of more than $50\%$ of the trainable parameters with approximately $<5\%$ and $<1\%$ drop of Top-1 and Top-5 classification accuracy, respectively.


翻译:辍学是一种广为人知的正规化方法,从更深的神经网络网络中取样一个子网络,并在数据的不同子集中培训不同的子网络。受退出概念的启发,我们建议EDropout作为基于能源的框架,用于在分类任务中运行神经网络。在这个方法中,一组二进制的州矢量(人口)代表一套来自任意提供的原始神经网络的相应子网络。一个能源损失函数为每个运行中状态指定一个比例级的能量损失值。基于能源的模型对人口进行快速进化进化,以找到能量损失较少的状态。随后选择了最佳的运行状态,并将其应用到原始网络中。类似地,保持的权重正在用一种价格模型进行更新。基于能源的模型再次寻找更好的运行状态和循环的周期。事实上,这个程序在能源模型之间转换,它管理着运行中的状态, 以及稳定模型, 能够更新暂时的内压值的内值的内值 值 值网络的内值, 不断的机变速度 。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
图神经网络综述:方法及应用 | Deep Reading
AI100
36+阅读 · 2019年3月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
图神经网络综述:方法及应用 | Deep Reading
AI100
36+阅读 · 2019年3月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员