Design-by-Analogy (DbA) is a design methodology wherein new solutions, opportunities or designs are generated in a target domain based on inspiration drawn from a source domain; it can benefit designers in mitigating design fixation and improving design ideation outcomes. Recently, the increasingly available design databases and rapidly advancing data science and artificial intelligence technologies have presented new opportunities for developing data-driven methods and tools for DbA support. In this study, we survey existing data-driven DbA studies and categorize individual studies according to the data, methods, and applications in four categories, namely, analogy encoding, retrieval, mapping, and evaluation. Based on both nuanced organic review and structured analysis, this paper elucidates the state of the art of data-driven DbA research to date and benchmarks it with the frontier of data science and AI research to identify promising research opportunities and directions for the field. Finally, we propose a future conceptual data-driven DbA system that integrates all propositions.
翻译:逐个设计(DbA)是一种设计方法,根据源域的灵感,在一个目标领域产生新的解决办法、机会或设计;它可以使设计者在减少设计固定和改进设计构想结果方面受益;最近,现有越来越多的设计数据库以及迅速推进的数据科学和人工智能技术为开发数据驱动方法和工具以支持DbA提供了新的机会;在这项研究中,我们调查了现有的数据驱动的DbA研究,并根据数据、方法和应用分为四类,即类比编码、检索、绘图和评价,对个别研究进行分类;在精细的有机审查与结构分析的基础上,本文件阐述了数据驱动的DbA研究迄今为止的艺术状况,并将它与数据科学和AI研究的前沿进行基准化,以确定有希望的研究机会和方向;最后,我们建议了未来以数据驱动的DbA系统,将所有提议结合起来。