In this work the decision trees are used for explanation of support vector regression model. The decision trees act as a global technique as well as a local technique. They are compared against the popular technique of LIME which is a local explanatory technique and with multi linear regression. It is observed that decision trees give a lower RMSE value when fitted to support vector regression as compared to LIME in 87% of the runs over 5 datasets. The comparison of results is statistically significant. Multi linear regression also gives a lower RMSE value when fitted to support vector regression model as compared to LIME in 73% of the runs over 5 datasets but the comparison of results is not statistically significant. Also, when used as a local explanatory technique, decision trees give better performance than LIME and the comparison of results is statistically significant.
翻译:暂无翻译