There have been a number of recent proposals to enhance the performance of machine learning strategies for collider physics by combining many distinct events into a single ensemble feature. To evaluate the efficacy of these proposals, we study the connection between single-event classifiers and multi-event classifiers under the assumption that collider events are independent and identically distributed (IID). We show how one can build optimal multi-event classifiers from single-event classifiers, and we also show how to construct multi-event classifiers such that they produce optimal single-event classifiers. This is illustrated for a Gaussian example as well as for classification tasks relevant for searches and measurements at the Large Hadron Collider. We extend our discussion to regression tasks by showing how they can be phrased in terms of parametrized classifiers. Empirically, we find that training a single-event (per-instance) classifier is more effective than training a multi-event (per-ensemble) classifier, as least for the cases we studied, and we relate this fact to properties of the loss function gradient in the two cases. While we did not identify a clear benefit from using multi-event classifiers in the collider context, we speculate on the potential value of these methods in cases involving only approximate independence, as relevant for jet substructure studies.
翻译:最近提出了一系列建议,通过将许多不同事件合并成一个共同点特性来提高对撞物理学机算学习战略的性能,以提高对撞物理学机算学习战略的性能。为了评估这些建议的效力,我们研究了单事件分类师和多事件分类师之间的联系,假设对撞事件是独立的,分布相同(IID)。我们发现,如何从单一事件分类师中建立最佳的多事件分类师,我们也展示了如何构建多事件分类师,使其产生最佳的单一事件分类师。这是高斯的例子,也说明了与大 Hadron Collider 搜索和测量有关的分类任务。我们把讨论扩大到回归任务,展示如何用对相撞的分类师进行表述。我们经常发现,对单一事件分类师的培训比培训多事件分类员(per-Internance)分类师更为有效,至少为我们研究的案例提供了最佳的单一事件分类师。我们把这一事实与在大型 Hadron Collider 上进行搜索和测量的分类任务有关分类工作。我们把这个事实与损失函数的属性联系起来,我们在两个案例中使用了清晰的精确度的精确度研究中,我们只是从损失分类的亚值中用这些案例的数值来找出了。