In this article we introduce Line Smoothness-Increasing Accuracy-Conserving Multi-Resolution Analysis (LSIAC-MRA). This is a procedure for exploiting convolution kernel post-processors for obtaining more accurate multi-resolution analysis (MRA) in multiple dimensions. This filtering-projection tool allows for the transition of data between different resolutions while simultaneously decreasing errors in the fine grid approximation. It specifically allows for defining detail multi-wavelet coefficients when translating coarse data onto finer meshes. These coefficients are usually not defined in such cases. We show how to analytically evaluate the resulting convolutions and express the filtered approximation in a new basis. This allows for combining the filtering procedure with projection operators that allow for efficient computational implementation of this scale transition procedure. Further, this procedure can be applied to piecewise constant approximations to functions, contrary to the theory of SIAC filters. We demonstrate the effectiveness of this technique in two- and three-dimensions.
翻译:在本篇文章中,我们引入了“线滑度-准确度-保护性多分辨率分析 ” ( LSIAC-MRA) 。 这是利用进化内核后处理器获得多个方面更准确的多分辨率分析的程序。 这个过滤预测工具允许在不同分辨率之间转换数据,同时减少细网格近似中的错误。 它特别允许在将粗糙数据转换成细微网格时定义详细的多波列系数。 这些系数通常在这类情况下没有定义。 我们展示了如何分析评估由此产生的演变并以新的基础表达过滤近近似。 这使得过滤程序与预测操作器相结合, 从而能够有效地计算执行这一规模过渡程序。 此外, 这个程序可以用来与SIAC 过滤器的理论相反, 将连续近似函数。 我们用两个和三个层次来展示这一技术的有效性 。