Session-based recommendation aims to predict a user's next action based on previous actions in the current session. The major challenge is to capture authentic and complete user preferences in the entire session. Recent work utilizes graph structure to represent the entire session and adopts Graph Neural Network to encode session information. This modeling choice has been proved to be effective and achieved remarkable results. However, most of the existing studies only consider each item within the session independently and do not capture session semantics from a high-level perspective. Such limitation often leads to severe information loss and increases the difficulty of capturing long-range dependencies within a session. Intuitively, compared with individual items, a session snippet, i.e., a group of locally consecutive items, is able to provide supplemental user intents which are hardly captured by existing methods. In this work, we propose to learn multi-granularity consecutive user intent unit to improve the recommendation performance. Specifically, we creatively propose Multi-granularity Intent Heterogeneous Session Graph which captures the interactions between different granularity intent units and relieves the burden of long-dependency. Moreover, we propose the Intent Fusion Ranking module to compose the recommendation results from various granularity user intents. Compared with current methods that only leverage intents from individual items, IFR benefits from different granularity user intents to generate more accurate and comprehensive session representation, thus eventually boosting recommendation performance. We conduct extensive experiments on five session-based recommendation datasets and the results demonstrate the effectiveness of our method.


翻译:以会议为基础的建议旨在根据本届会议以前的行动预测用户的下一个行动。主要的挑战在于在整个届会中捕捉真实和完整的用户偏好。最近的工作使用图表结构来代表整个届会,并采用图表神经网络来编码会话信息。这一模型选择已证明是有效的,并取得了显著的成果。然而,大多数现有研究仅从会议内部独立审议每个项目,而没有从高层次的角度获取届会的语义。这种限制往往导致严重的信息损失,并增加在届会中捕捉远程依赖性的难度。与单个项目相比,一个直观的届会片段,即一组本地连续的项目,能够提供补充用户意向,而现有方法几乎无法反映这些意向。在这项工作中,我们提议学习多语种连续用户意向单位,以便改进建议性。我们创造性地提议多语系内在多种族间断性会话。与单个项目相比,会话节略地显示不同颗粒目标单位之间的相互作用,减轻长期意向的缩略性实验负担,即由当前连续的项目产生不同用户周期的排序结果。我们提议采用不同的方法,因此,我们建议采用不同周期的细度。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
WSDM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年1月19日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
WSDM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年1月19日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员