NLP research on public opinion manipulation campaigns has primarily focused on detecting overt strategies such as fake news and disinformation. However, information manipulation in the ongoing Russia-Ukraine war exemplifies how governments and media also employ more nuanced strategies. We release a new dataset, VoynaSlov, containing 38M+ posts from Russian media outlets on Twitter and VKontakte, as well as public activity and responses, immediately preceding and during the 2022 Russia-Ukraine war. We apply standard and recently-developed NLP models on VoynaSlov to examine agenda setting, framing, and priming, several strategies underlying information manipulation, and reveal variation across media outlet control, social media platform, and time. Our examination of these media effects and extensive discussion of current approaches' limitations encourage further development of NLP models for understanding information manipulation in emerging crises, as well as other real-world and interdisciplinary tasks.
翻译:在2022年俄罗斯-乌克兰战争之前和期间,俄罗斯人民党对民意操纵运动的研究主要侧重于发现公开战略,如假新闻和假信息;然而,俄罗斯-乌克兰战争中的信息操纵展示了政府和媒体如何运用更细致的战略;我们发布了一个新的数据集VoynaSlov,其中载有俄罗斯媒体在Twitter和VKontakte上的38M+ 文章,以及公共活动和应对措施;我们在2022年俄罗斯-乌克兰战争之前和战争期间,在VoynaSlov应用了标准和最近开发的NLP模式,以审查议程设置、设置和覆盖信息操纵的若干战略,并揭示了媒体控制、社会媒体平台和时间之间的差异;我们对这些媒体影响的审查以及对当前做法局限性的广泛讨论鼓励进一步发展NLP模式,以了解新出现的危机的信息操纵以及其他现实世界和跨学科任务。