This paper addresses the gradient coding and coded matrix multiplication problems in distributed optimization and coded computing. We present a numerically stable binary coding method which overcomes the drawbacks of the gradient coding method proposed by Tandon et al., and can also be leveraged by coded computing networks whose servers are of heterogeneous nature. The proposed binary encoding avoids operations over the real and complex numbers which are inherently numerically unstable, thereby enabling numerically stable distributed encodings of the partial gradients. We then make connections between gradient coding and coded matrix multiplication. Specifically, we show that any gradient coding scheme can be extended to coded matrix multiplication. Furthermore, we show how the proposed binary gradient coding scheme can be used to construct three different coded matrix multiplication schemes, each achieving different trade-offs.
翻译:本文涉及分布式优化和编码计算中的梯度编码和编码矩阵乘法问题。 我们提出了一个数字稳定的二进制编码方法,可以克服Tandon等人提议的梯度编码方法的缺点,也可以被其服务器性质各异的编码计算机网络所利用。 提议的二进制编码避免对数字性不稳定的实际数字和复杂数字进行操作, 从而允许对部分梯度进行数字稳定的编码。 我们然后在梯度编码和编码矩阵乘法之间建立联系。 具体地说, 我们显示, 任何梯度编码办法都可以扩展为编码式矩阵乘法。 此外, 我们展示了如何利用拟议的二进制梯度编码编码方法来构建三个不同的编码矩阵乘法, 每一个都实现不同的取舍。