We consider the mobile localization problem in future millimeter-wave wireless networks with distributed Base Stations (BSs) based on multi-antenna channel state information (CSI). For this problem, we propose a Semi-supervised tdistributed Stochastic Neighbor Embedding (St-SNE) algorithm to directly embed the high-dimensional CSI samples into the 2D geographical map. We evaluate the performance of St-SNE in a simulated urban outdoor millimeter-wave radio access network. Our results show that St-SNE achieves a mean localization error of 6.8 m with only 5% of labeled CSI samples in a 200*200 m^2 area with a ray-tracing channel model. St-SNE does not require accurate synchronization among multiple BSs, and is promising for future large-scale millimeter-wave localization.
翻译:我们考虑在基于多防河道国家信息(CSI)的分布式基地站(BS)未来移动波无线网络中移动本地化问题。 关于这个问题,我们建议采用半监督分散式相邻居民嵌入算法(St-SNE)直接将高维CSI样本嵌入2D地理图中。我们评估了St-SNE在模拟城市户外无线电接入网络中的性能。我们的结果显示, St-SNE在200平方米区域中只有5%的贴有标签的CSI样本实现了6.8米的平均本地化错误。 St-SNE不需要多个BS的精确同步,并且对未来大规模毫米本地化很有希望。