We create a framework to analyse the timing and frequency of instantaneous interactions between pairs of entities. This type of interaction data is especially common nowadays, and easily available. Examples of instantaneous interactions include email networks, phone call networks and some common types of technological and transportation networks. Our framework relies on a novel extension of the latent position network model: we assume that the entities are embedded in a latent Euclidean space, and that they move along individual trajectories which are continuous over time. These trajectories are used to characterize the timing and frequency of the pairwise interactions. We discuss an inferential framework where we estimate the individual trajectories from the observed interaction data, and propose applications on artificial and real data.
翻译:我们创建了一个框架来分析对等实体之间瞬时互动的时间和频率。 这种互动数据在当今特别常见,而且容易获得。 即时互动的例子包括电子邮件网络、电话网络以及一些常见的技术和运输网络。 我们的框架依赖于潜在位置网络模型的新扩展: 我们假设这些实体嵌入潜伏的欧几里德空间, 并且它们沿着随时间而持续的各个轨道移动。 这些轨迹被用来描述对等互动的时间和频率。 我们讨论一个推断框架, 我们从中估算观察到的互动数据中的个体轨迹, 并提议对人工和真实数据的应用 。