AI engineering has emerged as a crucial discipline to democratize deep neural network (DNN) models among software developers with a diverse background. In particular, altering these DNN models in the deployment stage posits a tremendous challenge. In this research, we propose and develop a low-code solution, ModelPS (an acronym for "Model Photoshop"), to enable and empower collaborative DNN model editing and intelligent model serving. The ModelPS solution embodies two transformative features: 1) a user-friendly web interface for a developer team to share and edit DNN models pictorially, in a low-code fashion, and 2) a model genie engine in the backend to aid developers in customizing model editing configurations for given deployment requirements or constraints. Our case studies with a wide range of deep learning (DL) models show that the system can tremendously reduce both development and communication overheads with improved productivity. The code has been released as an open-source package at GitHub.


翻译:AI工程已成为使具有不同背景的软件开发者实现深神经网络模型民主化的关键学科。 特别是,在部署阶段改变这些DNN模型带来了巨大的挑战。 在这一研究中,我们提出并开发了一种低代码解决方案,即模型PS(“ Model Photoshop ” 缩略语),以扶持和增强合作DNN模型编辑和智能模型。模型PS解决方案包含两个变革性特征:1) 一个用户友好的网络界面,供开发者团队以低代码方式分享和编辑DNN模型模型,2) 后端的一个模型精灵引擎,用于帮助开发者根据特定部署要求或限制定制模式编辑配置模式配置。我们具有广泛深度学习模型的案例研究显示,该系统可以极大地减少开发和通信管理,提高生产率。代码已作为GitHub的公开源软件包发布。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
41+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
3+阅读 · 2020年7月16日
Arxiv
12+阅读 · 2019年2月28日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
41+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员