Data-driven approaches recently achieved remarkable success in medical image reconstruction, but integration into clinical routine remains challenging due to a lack of generalizability and interpretability. Existing approaches usually require high-quality data-image pairs for training, but such data is not easily available for any imaging protocol and the reconstruction quality can quickly degrade even if only minor changes are made to the protocol. In addition, data-driven methods may create artificial features that can influence the clinicians decision-making. This is unacceptable if the clinician is unaware of the uncertainty associated with the reconstruction. In this paper, we address these challenges in a unified framework based on generative image priors. We propose a novel deep neural network based regularizer which is trained in an unsupervised setting on reference images without requiring any data-image pairs. After training, the regularizer can be used as part of a classical variational approach in combination with any acquisition protocols and shows stable behavior even if the test data deviates significantly from the training data. Furthermore, our probabilistic interpretation provides a distribution of reconstructions and hence allows uncertainty quantification. We demonstrate our approach on parallel magnetic resonance imaging, where results show competitive performance with SotA end-to-end deep learning methods, while preserving the flexibility of the acquisition protocol and allowing for uncertainty quantification.


翻译:以数据为驱动的方法最近在医疗图像重建方面取得了显著的成功,但融入临床常规仍具有挑战性,因为缺乏通用性和可解释性。现有方法通常需要高质量的数据图像配对来进行培训,但这些数据对于任何成像协议都不容易获得,即使只对协议稍作改动,重建质量也会迅速退化。此外,以数据为驱动的方法可能会产生能影响临床医生决策的人工特征。如果临床医生不知道与重建有关的不确定性,这是不可接受的。在本文件中,我们根据基因化图像前期的统一框架来应对这些挑战。我们建议建立一个新型的、以不受监督的参照图像为主的精细神经网络,在不要求任何数据图像配对的情况下对其进行培训。在培训之后,可使用成像器作为传统变异方法的一部分,与任何采购协议相结合,并显示稳定的行为,即使测试数据与培训数据有很大差异。此外,我们的概率解释提供了重建的分布,从而允许对不确定性进行量化。我们展示了平行的磁共振成像方法,同时以具有竞争力的获取方法,从而保持深度学习的稳定性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月7日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员