Objective: We used deep convolutional neural networks (DCNNs) to classify electroencephalography (EEG) signals in a steady-state visually evoked potentials (SSVEP) based single-channel brain-computer interface (BCI), which does not require calibration on the user. Methods: EEG signals were converted to spectrograms and served as input to train DCNNs using the transfer learning technique. We also modified and applied a data augmentation method, SpecAugment, generally employed for speech recognition. Furthermore, for comparison purposes, we classified the SSVEP dataset using Support-vector machines (SVMs) and Filter Bank canonical correlation analysis (FBCCA). Results: Excluding the evaluated user's data from the fine-tuning process, we reached 82.2% mean test accuracy and 0.825 mean F1-Score on 35 subjects from an open dataset, using a small data length (0.5 s), only one electrode (Oz) and the DCNN with transfer learning, window slicing (WS) and SpecAugment's time masks. Conclusion: The DCNN results surpassed SVM and FBCCA performances, using a single electrode and a small data length. Transfer learning provided minimal accuracy change, but made training faster. SpecAugment created a small performance improvement and was successfully combined with WS, yielding higher accuracies. Significance: We present a new methodology to solve the problem of SSVEP classification using DCNNs. We also modified a speech recognition data augmentation technique and applied it to the context of BCIs. The presented methodology surpassed performances obtained with FBCCA and SVMs (more traditional SSVEP classification methods) in BCIs with small data lengths and one electrode. This type of BCI can be used to develop small and fast systems.
翻译:目标:我们使用了深层神经神经网络(DCNNNs)来将电动神经网络(EEG)信号分类为稳定状态的直观潜在(SSVEP)和过滤银行的单声道脑计算机界面(BCI),不需要用户校准。方法:EEG信号被转换成光谱图,并用作使用传输学习技术培训DCNNs的输入。我们还修改并应用了数据增强方法,通常用于语音识别。此外,为了比较的目的,我们使用支持定位机器(SVMS)和过滤银行的直观关系分析(FCCA)。结果:将评估用户的数据从微调进程中排除,我们达到82.2%的测试精度,用传输学习技术对35个主题的0.825平均F1核心值。我们用一个小数据长度(0.5 s)、一个小电德(Oz)和带有传输学习、窗口校正读和SpeciPA的升级环境。这个结论:DGNFNFNCS的性能测试方法,我们用SDA和SVER的快速数据方法,我们用了SVBSVB的快速数据方法,我们用了一个新的性能和SVB的性能方法,我们用了一个SVBA和SVDROde的性能方法,我们用了一个SVB的快速的性能和SVFVB的性能。我们提供了一个新的性能的快速的性能方法,我们提供了一个新的数据。