Context: Over the last years, Grey Literature (GL) is gaining increasing attention in Secondary Studies in Software Engineering (SE). Notably, Multivocal Literature Review (MLR) studies, that search for evidence in both Traditional Literature (TL) and GL, is particularly benefiting from this raise of GL content. Despite the growing interest in MLR-based studies, the literature assessing how GL has contributed to MLR studies is still scarce. Objective: This research aims to assess how the use of GL contributed to MLR studies. By contributing, we mean, understanding to what extent GL is providing evidence that is indeed used by an MLR to answer its research question. Method: We conducted a tertiary study to identify MLR studies published between 2017 and 2019, selecting nine MLRs studies. Using qualitative and quantitative analysis, we identified the GL used and assessed to what extent these MLRs are contributing to MLR studies. Results: Our analysis identified that 1) GL provided evidence not found in TL, 2) most of the GL sources were used to provide recommendations to solve problems, explain a topic, and classify the findings, and 3) 19 different GL types were used in the studies; these GLs were mainly produced by SE practitioners (including blog posts, slides presentations, or project descriptions). Conclusions: We evidence how GL contributed to MLR studies. We observed that if these GLs were not included in the MLR, several findings would have been omitted or weakened. We also described the challenges involved when conducting this investigation, along with potential ways to deal with them, which may help future SE researchers.


翻译:过去几年来,灰文学(GL)在软件工程(SE)的中学研究中日益受到越来越多的关注。 值得注意的是,多语言文学审查(MLR)的研究,在传统文学(TL)和GL(GL)中寻找证据,特别受益于GL内容的这一提高。尽管对MLL研究的兴趣越来越大,但评估GL如何为MLR研究作出贡献的文献仍然很少。目标:这项研究的目的是评估GL的使用如何有助于MLR研究。我们通过帮助了解GL(ML)提供的证据在多大程度上被ML(MLR)用于回答其研究问题。方法:我们进行了三级研究,以确定2017年至2019年出版的MLL(TL)和GLL(M)研究,我们利用了GL(L)和GL(GL(L)研究)进行这些研究,我们的分析发现GLL(L)没有提供证据,2 GL(L)中的多数GL(L)来源被用来提供解决问题的建议,解释一个专题,并将研究结果分类。 方法:我们用19个GL(GL(GL)类)的论文研究,我们用了这些研究, 包括GL(GL(L)的论文的论文,我们用这些研究,我们用GL(我们用这些研究,我们用GL(L(L)进行这些研究)的论文的论文(L)进行这些研究,这些研究)的论文(我们用的是L)的论文(L)的论文,这些论文,这些论文(我们用的是这些论文,这些论文,这些论文,这些论文的论文(我们用这些论文的论文(我们用的是这些研究,这些论文的论文的论文的论文的论文的论文的论文,这些论文,这些论文,这些研究用是用这些论文的论文的论文的论文的论文的论文,这些研究用是这些研究是用的是这些研究,这些论文的论文的论文,我们用是用这些研究,我们用这些研究是用的论文的论文,我们用的方法是用这些研究是用这些论文的论文,我们用的论文。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Many Proxy Controls
Arxiv
0+阅读 · 2021年10月8日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员