Causal discovery for purely observational, categorical data is a long-standing challenging problem. Unlike continuous data, the vast majority of existing methods for categorical data focus on inferring the Markov equivalence class only, which leaves the direction of some causal relationships undetermined. This paper proposes an identifiable ordinal causal discovery method that exploits the ordinal information contained in many real-world applications to uniquely identify the causal structure. Simple score-and-search algorithms are developed for structure learning. The proposed method is applicable beyond ordinal data via data discretization. Through real-world and synthetic experiments, we demonstrate that the proposed ordinal causal discovery method has favorable and robust performance compared to state-of-the-art alternative methods in both ordinal categorical and non-categorical data.
翻译:纯粹观测、绝对数据的原因发现是一个长期存在的挑战性问题。 与连续的数据不同,现有绝对数据方法的绝大多数侧重于仅推断马尔科夫等同等级,这使得某些因果关系的方向没有确定。本文件提出一种可识别的因果发现方法,利用许多现实世界应用中包含的正统信息来独特地确定因果关系结构。为结构学习开发了简单的计分和搜索算法。拟议方法的适用范围超出了数据分解的正统数据。通过现实世界和合成实验,我们证明拟议中的因果发现方法与最先进的绝对和非分类数据替代方法相比,具有优异和稳健的性能。