Analysis of signals with oscillatory modes with crossover instantaneous frequencies is a challenging problem in time series analysis. One way to handle this problem is lifting the 2-dimensional time-frequency representation to a 3-dimensional representation, called time-frequency-chirp rate (TFC) representation, by adding one extra chirp rate parameter so that crossover frequencies are disentangles in higher dimension. The chirplet transform is an algorithm for this lifting idea. However, in practice we found that it has a stronger "blurring" effect in the chirp rate axis, which limits its application in real world data. Moreover, to our knowledge, we have limited mathematical understanding of the chirplet transform in the literature. Motivated by real world data challenges, in this paper, we propose the synchrosqueezed chirplet transform (SCT) that gives a concentrated TFC representation that the contrast is enhanced so that one can distinguish different modes even with crossover instantaneous frequencies. We also analyze chirplet transform and provide theoretical guarantee of SCT.
翻译:使用横跨瞬时频率的螺旋模式分析信号是时间序列分析中一个具有挑战性的问题。 解决这一问题的一个方法就是将二维时间频率代表器提升为三维代表器,称为时频-峰速率代表器(TFC),方法是增加一个额外的正弦速率参数,使交叉频率在较高维度上被分解。 辣椒变形是这一升动想法的一种算法。 然而,在实践中,我们发现它具有较强的“ 膨胀” 效果, 限制其在真实世界数据中的应用。 此外,根据我们的知识, 我们对文献中辣椒变形的数学理解有限。 受真实世界数据挑战的驱动,我们在本论文中提议了同步克螺旋曲变形代表器(SCT),这种变形能产生集中的TFC代表器,从而增强对比度,从而可以区分不同模式,即使是交叉瞬时频率。 我们还分析辣椒变形,并提供SCT的理论保证。