We develop a novel a posteriori error estimator for the $L^2$ error committed by the finite element discretization of the solution of the fractional Laplacian. Our a posteriori error estimator takes advantage of the semi-discretization scheme using rational approximations which allow to reformulate the fractional problem into a family of non-fractional parametric problems. The estimator involves applying the implicit Bank-Weiser error estimation strategy to each parametric non-fractional problem and reconstructing the fractional error through the same rational approximation used to compute the solution to the original fractional problem. In addition we propose an algorithm to adapt both the finite element mesh and the rational scheme in order to balance the discretization errors. We provide several numerical examples in both two and three-dimensions demonstrating the effectivity of our estimator for varying fractional powers and its ability to drive an adaptive mesh refinement strategy.
翻译:我们开发了一个新颖的后置误差估计器, 用于计算分数问题解决方案的有限元素的分解差错。 我们的后置误差估计器利用了半分解方案, 使用理性近似法将分数问题重新划分成非偏差问题。 估计器包括对每个非偏差问题应用隐含的银行- Weiser错误估计策略, 并通过用于计算原分数问题解决方案的相同合理近似法重建分数错误。 此外, 我们提议一种算法, 以调整有限元素网目和理性方案, 以平衡分解错误。 我们在两个和三个分解法中提供了几个数字例子, 以显示我们的估计器具有不同分数能力, 及其驱动适应型网格改进策略的能力。</s>