This paper deals with differentiable dynamical models congruent with neural process theories that cast brain function as the hierarchical refinement of an internal generative model explaining observations. Our work extends existing implementations of gradient-based predictive coding with automatic differentiation and allows to integrate deep neural networks for non-linear state parameterization. Gradient-based predictive coding optimises inferred states and weights locally in for each layer by optimising precision-weighted prediction errors that propagate from stimuli towards latent states. Predictions flow backwards, from latent states towards lower layers. The model suggested here optimises hierarchical and dynamical predictions of latent states. Hierarchical predictions encode expected content and hierarchical structure. Dynamical predictions capture changes in the encoded content along with higher order derivatives. Hierarchical and dynamical predictions interact and address different aspects of the same latent states. We apply the model to various perception and planning tasks on sequential data and show their mutual dependence. In particular, we demonstrate how learning sampling distances in parallel address meaningful locations data sampled at discrete time steps. We discuss possibilities to relax the assumption of linear hierarchies in favor of more flexible graph structure with emergent properties. We compare the granular structure of the model with canonical microcircuits describing predictive coding in biological networks and review the connection to Markov Blankets as a tool to characterize modularity. A final section sketches out ideas for efficient perception and planning in nested spatio-temporal hierarchies.
翻译:本文涉及与神经过程理论相匹配的不同动态模型,这些模型使大脑功能成为内部基因模型解释观察的等级完善。我们的工作扩展了基于梯度的预测编码和自动分化的现有实施,并能够将非线性状态参数化的深神经网络整合起来。基于梯度的预测编码,根据每个层的深度编码,将精确加权的预测错误推导出从模量到潜伏状态。预测从潜伏状态向下层流。预测从潜伏状态向下流流。模型在这里建议对潜伏状态的等级和动态预测进行优化。高级预测将预期的内容和等级结构编码化。动态预测将编码内容的变化与较高的顺序衍生物结合起来进行整合。从高层次和动态预测对各个层的不同方面进行互动和处理。我们将模型应用到从结构上的精度加权预测和规划任务,并显示其相互依赖性。特别是,我们展示了如何在平行位置上学习抽样数据,在离心性时间步骤上进行抽样。高层次预测预测,将预期内容编码预测对预期内容进行编码结构进行编码,我们讨论与更灵活地分析,以图性地分析。我们可以比较地分析,以图性地分析,以便比较地分析结构结构结构结构分析。我们可以比较地分析。