Natural language explanations promise to offer intuitively understandable explanations of a neural network's decision process in complex vision-language tasks, as pursued in recent VL-NLE models. While current models offer impressive performance on task accuracy and explanation plausibility, they suffer from a range of issues: Some models feature a modular design where the explanation generation module is poorly integrated with a separate module for task-answer prediction, employ backbone models trained on limited sets of tasks, or incorporate ad hoc solutions to increase performance on single datasets. We propose to evade these limitations by applying recent advances in large-scale multi-task pretraining of generative Transformer models to the problem of VL-NLE tasks. Our approach outperforms recent models by a large margin, with human annotators preferring the generated explanations over the ground truth in two out of three evaluated datasets. As a novel challenge in VL-NLE research, we propose the problem of multi-task VL-NLE and show that jointly training on multiple tasks can increase the explanation quality. We discuss the ethical implications of high-quality NLE generation and other issues in recent VL-NLE research.
翻译:自然语言解释承诺对神经网络的复杂视觉语言任务的决策过程提供直觉理解的解释,正如最近的VL-NLE模型所追求的那样。虽然目前的模型在任务准确性和解释的可信度方面表现令人印象深刻,但它们存在一系列问题:一些模型具有模块设计,其中解释生成模块与单独的任务预测模块整合不力,采用经过有限任务组合培训的骨干模型,或采用临时解决办法提高单一数据集的性能。我们提议通过对VL-NLE任务问题应用大规模多任务化变异模型大规模培训前的最近进展来避免这些限制。我们的方法大大超越了最近的模型,在经过评估的三套数据集中,有两套中的人倾向于对地面真相作出解释。作为VL-NLE研究中的一个新挑战,我们提出了多任务VLE-NLE研究的多任务问题,并表明关于多重任务的联合培训可以提高解释质量。我们讨论了高质量NLE生成的伦理影响以及最近的VL-NLE研究中的其他问题。