Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss; yet surprisingly, they possess near-optimal prediction performance, contradicting classical learning theory. We examine how these benign overfitting phenomena occur in a two-layer neural network setting where sample covariates are corrupted with noise. We address the high dimensional regime, where the data dimension $d$ grows with the number $n$ of data points. Our analysis combines an upper bound on the bias with matching upper and lower bounds on the variance of the interpolator (an estimator that interpolates the data). These results indicate that the excess learning risk of the interpolator decays under mild conditions. We further show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate, which to our knowledge is the first generalization result for such networks. Finally, our theory predicts that the excess learning risk starts to increase once the number of parameters $s$ grows beyond $O(n^2)$, matching recent empirical findings.


翻译:现代机器学习模式通常使用大量参数,通常优化为零培训损失;但令人惊讶的是,它们拥有接近最佳的预测性能,这与古典学习理论相矛盾。我们审视了在两层神经网络环境中这些无害的超常现象是如何发生的,在这两层神经网络中,样本的共异性因噪音而腐蚀。我们处理的是高维系统,数据维度美元随着数据点的美元数增长而增长。我们的分析将偏向的上限与对乘数差异的上限和下限相匹配(一个估算数据内插的估测器)结合起来。这些结果表明,两层ReLU网络的跨极者在温和条件下衰减的超常学习风险。我们进一步表明,两层ReLU网络的跨极者有可能实现接近微缩缩成最佳的学习率,据我们所知,这是这类网络的第一个概括结果。最后,我们的理论预测,超额学习风险一旦参数数超过$O(n)美元,就会开始增加,与最近的实证结果相匹配。

1
下载
关闭预览

相关内容

过拟合,在AI领域多指机器学习得到模型太过复杂,导致在训练集上表现很好,然而在测试集上却不尽人意。过拟合(over-fitting)也称为过学习,它的直观表现是算法在训练集上表现好,但在测试集上表现不好,泛化性能差。过拟合是在模型参数拟合过程中由于训练数据包含抽样误差,在训练时复杂的模型将抽样误差也进行了拟合导致的。
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
103+阅读 · 2019年11月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年5月13日
VIP会员
相关资讯
图神经网络(Graph Neural Networks,GNN)综述
极市平台
103+阅读 · 2019年11月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员