We consider the allocation of $m$ balls (jobs) into $n$ bins (servers). In the standard Two-Choice process, at each step $t=1,2,\ldots,m$ we first sample two bins uniformly at random and place a ball in the least loaded bin. It is well-known that for any $m \geq n$, this results in a gap (difference between the maximum and average load) of $\log_2 \log n + \Theta(1)$ (with high probability). In this work, we consider the Memory process [Mitzenmacher, Prabhakar and Shah 2002] where instead of two choices, we only sample one bin per step but we have access to a cache which can store the location of one bin. Mitzenmacher, Prabhakar and Shah showed that in the lightly loaded case ($m = n$), the Memory process achieves a gap of $\mathcal{O}(\log \log n)$. Extending the setting of Mitzenmacher et al. in two ways, we first allow the number of balls $m$ to be arbitrary, which includes the challenging heavily loaded case where $m \geq n$. Secondly, we follow the heterogeneous bins model of Wieder [Wieder 2007], where the sampling distribution of bins can be biased up to some arbitrary multiplicative constant. Somewhat surprisingly, we prove that even in this setting, the Memory process still achieves an $\mathcal{O}(\log \log n)$ gap bound. This is in stark contrast with the Two-Choice (or any $d$-Choice with $d=\mathcal{O}(1)$) process, where it is known that the gap diverges as $m \rightarrow \infty$ [Wieder 2007]. Further, we show that for any sampling distribution independent of $m$ (but possibly dependent on $n$) the Memory process has a gap that can be bounded independently of $m$. Finally, we prove a tight gap bound of $\mathcal{O}(\log n)$ for Memory in another relaxed setting with heterogeneous (weighted) balls and a cache which can only be maintained for two steps.


翻译:我们考虑将美元球( jobs) 分配到 $ bins (servers) 。 在标准 2 - Choice 进程中, 每一步都要 $t= 1, 2,\ holdots, mon 我们第一次随机地抽样两个球箱, 将球放入最不装入的垃圾桶。 众所周知, 对于任何一个$\ geq n美元, 这导致一个缺口( 最大和平均负荷之间的差异) $log_ 2 n +\ theta(1)$ ( 高概率 ) 。 在这项工作中, 我们考虑记忆进程( MItsenmacher, Prabakar 和 Shah ), 以每一步的方式, 我们只抽样一次, 将一个球放入一个存储。 Mitzenmacher, Prabakar 和 Shah 显示, 在轻装的箱子中, [mexm =nationals dismologs] 的记忆进程可能达到 美元差距( more) (creal) (cremodeal) a moudal rations a rus.

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
39+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员